Practical Implications of Urban Forest Management Programs to Improve Air Quality

Jerry Bond
Davey Resource Group
Geneva NY

315-585-9145, jbond@davey.com

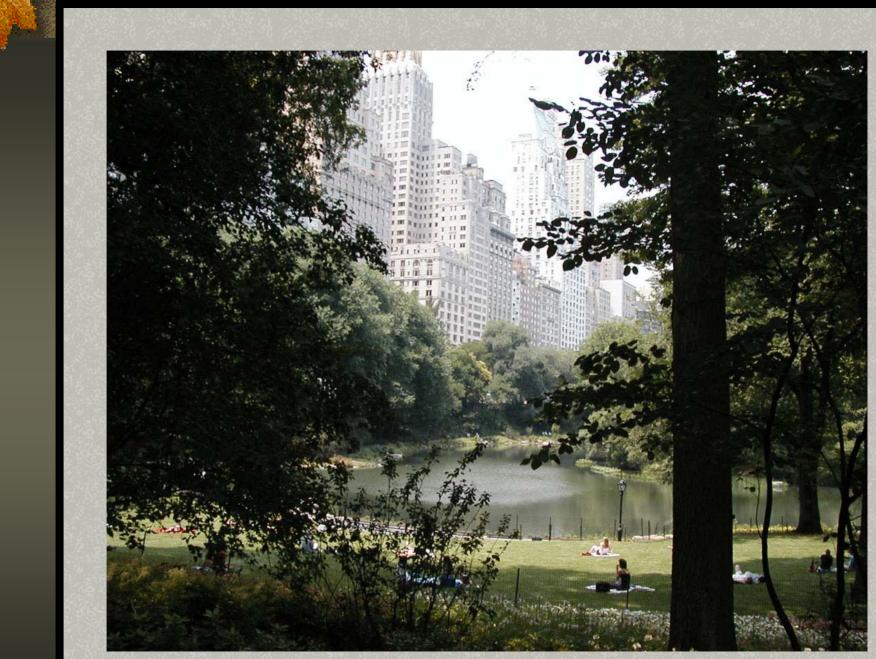
Many Agencies and People

David J. Nowak¹, Kevin Civerolo², Michael Ku², Kesu Zhang³, Huiting Mao³, Gopal Sistla², Eric Zalewsky², S. Trivikrama Rao⁷, Daniel E. Crane¹, Jeffrey T. Walton⁵, Christopher J. Luley⁶, Jerry Bond⁶, Chris Hogrefe², Jack Edwardson⁴, John Bachman⁴, Gary Allen⁷, Mike Galvin⁸, Tad Ahern⁸ and others⁸

¹ USDA Forest Service, Northeastern Research Station, Syracuse, NY

² New York State Department of Environmental Conservation, Albany, NY

³ State University of New York (SUNY) at Albany, Albany, NY


⁴ U.S. Environmental Protection Agency, Research Triangle Park, NC

⁵ SUNY College of Environmental Science and Forestry, Syracuse, NY

⁶ Davey Resource Group, Naples, NY

⁷ Center for Chesapeake Communities, Annapolis, MD

⁸ MD Dept of Natural Resources, MD Dept of Environment, University of MD

Foundation belief

- Urban Forest (canopy) can have substantial impacts on ozone
 - Atlanta Study (Cardelino and Chameides, 1990)
 - DC to MA Study (Nowak et al, 2000)
 - CA Study (Taha, 1996)
 - NYC Study (Luley and Bond, 2002)

Conceptual Analysis: Increasing Tree Cover

$$C_T = C_B + C_G - C_M + C_N$$

where

 C_T = Target canopy cover

 C_B = Existing canopy

 C_G = Canopy growth

 C_{M} = Canopy cover loss

 $C_N = Canopy from planting$

C_{B}

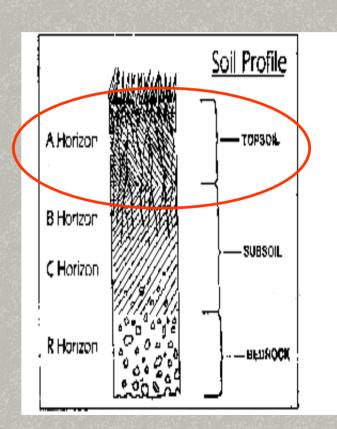
- Strategy: measure accurately
 - What do we actually have?
 - Canopy (remote analysis available)
 - What is its structure?
 - Species, count, DBH, condition
 - How does it function?
 - Carbon
 - NOx and SOx
 - PM

C_B

- Need to <u>promote</u> local knowledge
 - Local structural analysis
 - Inventories of any kind
 - Local functional analysis
 - UFORE, STRATUM (others?)
- Need to <u>pool</u> local knowledge
 - How can we speak at state level?
 - Need sampling protocol (TIGER/line files)

CG

- Strategy: promote functionality
- Various means
 - Preservation
 - Protection
 - Ordinance
 - Maintenance
 - Education


C_G

- Preservation and protection
 - New public emphasis, not just for huggers
 - Critical to keep with pace of development power, money issues
- Ordinance
 - Local code must reflect importance
 - NJ has experiment going

C_G

- Maintenance
 - Health is critical
 - Soil issues at center
 - Removals
 - Local manager support
- Education
 - Technical knowledge
 - Significance of effort
 - Good existing structures

CM

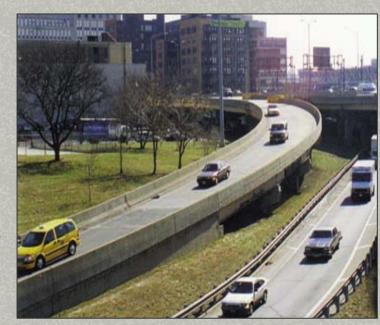
- Strategy: reduce mortality
- New forest
 - Selection, stock, installation
 - Water, mulch, fertilizer, training
 - Target: 5% annual (2 years)
- Established forest
 - Mulch, training
 - Target: 2% annual
- Ref. for percents: Miller, Urban Forestry

CM

- Gap between research and practice
 - Public practice
 - Private practice
- Big dollars involved
 - At beginning (replanting costs)
 - At end (ozone and all that)
- Sticks and carrots both necessary

CN

- Strategy: maximize return on effort
- NYC study: 1+ million trees per year for 10 years
 - Enough plantable space exists
 - 30 years to reach cover goals
- Trade off between planting rate and time to achieve modelled change


C_N

- Serious concerns
 - Sources
 - How to find that many trees
 - Specs
 - What size? What form? What species?
 - Sites
 - How will sites be identified and distributed?
 - Logistics
 - Storage, transportation, staging
 - Personnel
 - Who is going to plant? Oversight?

CN

- Tactics: identify likely locations
 - Public
 - Transport corridors
 - Institutions
 - Private
 - Corporate campuses
 - "Acres for Ozone"?
 - Institutions

Conclusions

- Serious but not insurmountable practical implications of trees-for-ozone policy
- These concerns affect policy-level decisions through cost/benefit analysis
- As policy work proceeds, practical planning should keep step
- Action step: create draft of practical planning document